

Overview of Geophysics for Environmental Site Characterization and Monitoring

Carlyle R. Miller, Ph.D.
U.S. Environmental Protection Agency
Office of Research and Development

Geophysical Properties

From http://appliedgeophysics.berkeley.edu:7057/intro/figures/fig_prop.jpg

Electrical Conductivity

Units:

S/m mS/cm

 Ω m

From http://www.eos.ubc.ca/ubcgif/ (adapted from Palacky, 1987)

Conductivity is a function of porosity, permeability, saturation, fluid conductivity, clay content, temperature

Seismic Wave Velocity

Material	v _p (m/s)	
Soil	250-600	
Weathered Layer	300-900	
Alluvium	500-2000	
Clay	1100-2500	
Air	331.5	
Water	1400-1600	
Sandstone and Shale	2000-4500	
Coal	1800-3400	
Limestone	2000-6000	
Igneous	5000-6400	

Variability caused by differences in:

Saturation
Consolidation
Weathering
Fracturing

Values summarized from various texts and online sources

 v_p is the P-Wave (compressional) velocity, this is always greater than the S-Wave (shear) velocity, v_s . The ratio of v_p/v_s is diagnostic of rock type.

Magnetic Susceptibility

Susceptibility X 1000 (SI units)
0.1-0.9
0.7-6
2.5-160
1200-19200
300-3500
1-6000

Dimensionless
quantity describing
the ability of a
material to be
magnetized

Values summarized from various texts and online sources

Depends primarily on magnetite content

Dielectric Constant

Measure of polarization (electronic, ionic, or molecular) resulting from an applied electric field.

Diagnostic of the amount of water present

Material	Dielectric Constant		
Water	80.36		
Ice	3-4.3		
Sandstone (dry to moist)	4.7-12		
Packed sand (dry to moist)	2.9-105		
Soil (dry to moist)	3.9-29.4		
Clay (dry to moist)	7-43		

Values summarized from various texts and online sources

Varies inversely with frequency

Density

- Density generally increases with depth and time of burial
- Igneous and metamorphic rocks are generally more dense than sedimentary rocks
- Wider variability in sedimentary rocks due to variations in porosity

Material	Density (g/cm³)	
Water (fresh)	1.0	
Soil / Overburden	1.2-2.4	
Sandstone	1.6-2.7	
Shale	1.7-3.2	
Limestone	1.9-2.9	
Granite	2.67-2.79	
Basalt	2.7-3.3	
Metamorphic	2.4-3.1	

Values summarized from various texts and online sources

Global average for crustal rocks is 2.67 g/cm³ (2670 kg/m³)

Which is Best to Use?

density-contrast

conductivity

chargeability

magnetic susceptibility

Good website for method selection at:

http://www.enviroscan.com/html/technique_selection.html

DC Resistivity

Pros: Sensitive to water Less interference vs. EM

Seismic Refraction

Pros:Good resolution Few interferences

Seismic Reflection

Pros: High resolution Scale & depth

Con:
Cost
Permits/Access

Frequency Domain EM

Pros: Fast

Good recon tool

Cons:

Limited depth Interferences

Ground Penetrating Radar

Pros:High resolution
Fast

Con: Limited depth

Gravity

Pros: Depth of investigation Scale

Cons:
Slow data acquisition
Interpretation

Magnetics

Pros: Relatively fast

Direct interpretation

Cons:

Modeling often complex Interferences

Other Methods

Electrical self potential – provides information about groundwater flow, chemical and temperature gradients

Induced polarization – Measures chargeability, related to porosity structure, mineral grain size

East

Controlled source
electromagnetics –
Surface techniques
used to measure
electrical conductivity
to depths of several km

Borehole Logging

Spontaneous Potential Magnetic Susceptibility Natural Gamma

Caliper

Resistivity

Induction

Sonic

Density

Video

Temperature

Mud log

Cement Bond Log

Others...

Useful for determining:

Geological units

Water bearing zones

Screen settings

Pump depth

Packer locations

Also, can use some of the previously discussed methods in boreholes.

Airborne Geophysics

http://www.worldoil.com/Article.aspx?id=40370

Generally lower resolution but covers large areas quickly Often used as a reconnaissance tool to identify areas for detailed ground-based investigation

Electromagnetics Example

Goal – Characterize a geothermal resource and identify possible drilling targets

Method – Controlled source audio-frequency

magnetotellurics (CSAMT)

Survey Layout

Multi-Frequency Data

Model Slices

Conceptual Model of Geothermal System

Multiple Methods

Goal – Verify ZVI emplacement in subsurface

redox manipulation barrier

Location – DOE Hanford Site, Washington State

Methods – Electrical resistivity, Induced polarization, Borehole logging

Resistivity Models

Chargeability (IP) Models

Borehole EM

Seismic Refraction

Goal – Characterize a construction site and identify possible karst sinkhole features or other hazards

Method – Seismic Refraction

Location – Radford Army Ammunition Plant, Virginia

Site Plan

Velocity Model

Velocity Model

Time Lapse Resistivity

Goal – Determine seasonal variability in water storage for a small watershed

Method – Time lapse resistivity

Location - North of Boise, Idaho

Dry Creek

Survey Timing

Soil moisture sensors buried 5, 15, 30, 45, and 60 cm deep

Data acquisition was timed to capture two dry periods and two wet periods

Saturation Changes

Magnetics

Goal - Characterize a geothermal system

Method – Magnetics

Location – Alvord Desert,
Eastern Oregon

Susceptibility Model

Slice Through Model

Near Surface EM Tools

System	Description	Horizontal Resolution	Vertical Resolution	Frequency/ Time Domain/ Static
EM31	Vertical Loop/ Horizontal Loop. Coil separation 3.7m	Few meters	Between 1-6m.	Frequency domain. Operates at 9.8 KHz
EM 34-3	Vertical Loop/ Horizontal Loop. Coil separation 10,20,40 m	Tens of meters	Between 4-60m.	Frequency domain. 0.4,1.6,6.4 kHz.
EM 61	Coincident Loop	1m	3-5m	Time Domain
Protem	Loop TX: 5m-100m, RX: 60cm	Wider than TX Loop	Few to hundreds of meters	Time domain: with time gates 6microsec-32ms
Syscal	Multi-Channel Resistivity system	Depends on electrode spacing	Cm to 100s of meters	DC potentials measured
OhmMappe r	Capacitively coupled system at 17 kHz	Depends on electrode spacing	Cm to 100s of meters	Electric Field measured